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The unstable plastic flow of an AlMg alloy, associated with the Portevin-Le Chatelier effect, was studied
near the lower strain-rate boundary of instability using multifractal analysis. Self-similarity of deformation
curves, indicating long-range time correlations of stress serrations, was detected within the strain-rate range
where serrations are commonly ascribed to the occurrence of uncorrelated deformation bands. The deformation
curves display a wide range of shapes that are characterized by different groupings of serrations. Multifractal
analysis provides a method to quantify the observed complexity and compare it to known Portevin–Le Chat-
elier effect regimes. The measurement noise effect on the multifractal spectra determined from experimental
data was mimicked by superposing multifractal Cantor sets with random noise. Such tests using standard
multifractal data sets justify the separation of self-similar and random components of the serrated deformation
curves. Furthermore, these results shed light on the general problem of the effect of experimental noise on the
apparent multifractal properties of physical fractals.
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I. INTRODUCTION

The discontinuous plastic flow of alloys associated with
the Portevin–Le Chatelier �PLC� effect �1� is an example of a
collective phenomenon akin to relaxation oscillations �2� in
other complex nonlinear systems. Indeed, the dynamical na-
ture of this effect can be illustrated by the following qualita-
tive consideration. The microscopic mechanism of plastic de-
formation during the PLC effect is dislocation glide, which is
governed by thermally activated motion of dislocations past
obstacles. Increasing the plastic strain rate requires a de-
crease in the waiting time associated with the thermal acti-
vation of dislocations. In the case of a pure metal deformed
at a constant temperature, this is equivalent to a requirement
of increasing the applied stress. The mechanical behavior for
pure materials is often described by positive stress-rate rela-
tionships, which result in stable plastic deformation and mac-
roscopically smooth deformation curves. In solution-
strengthened alloys, the resistance to further motion of
dislocations temporarily arrested at obstacles increases by
solute atoms diffusing to them during the waiting time. For
these materials, the reduction of waiting time may lead to a
depletion of the solute concentration on the arrested disloca-
tions and consequently decreases the required stress for fur-
ther slip. As a result, the dependence of the flow stress on the
strain rate is N shaped for many alloys, with a typical range
of negative strain-rate sensitivity from 10−6 to 10−2 s−1. De-
formation of such alloys is essentially a process of relaxation

oscillations, providing that the applied strain rate is chosen
within the aforementioned range. The plastic flow experi-
ences recurrent accelerations via activation of deformation
bands �3,4�. In particular, this leads to the observation of
repetitive unloading or serration in experiments conducted at
a constant strain rate.

The strain heterogeneity in real materials is more complex
than an idealized picture based on the suggestion that all
dislocations behave equally. Specifically, the serrations are
not periodic and the deformation curves display a variety of
shapes depending on the material and testing conditions.
However, several common types of stress serrations and de-
formation band patterns have been observed for various ma-
terials and related to certain experimental conditions �5�.
This suggests that the plastic flow has a nonrandom charac-
ter, which may reflect the collective dislocation dynamics
�3�. In particular, the correlation of the deformation bands
becomes weaker when the applied strain rate is decreased, as
expected from the phenomenological classification of the
PLC effect. Characterizations of the instability observed at
different applied strain rates often fall into the following cat-
egories. A quasicontinuous propagation of deformation bands
is observed near the upper strain-rate boundary of plastic
instability �the so-called type A behavior�. It changes to
“relay-race” propagation; successive formation of distinct
bands in the vicinity of each other at intermediate strain rates
�type B behavior�. Finally, the bands are commonly believed
to nucleate at random near the lower instability boundary
�type C behavior�.

Earlier studies have shown that types A and B of the PLC
effect are related to distinct dynamical regimes. Specifically,
power-law statistics were found for the amplitudes and inter-
vals between type A stress jumps �6,7�. The scale invariance
of the distributions, expressed by the power law, was as-
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cribed to avalanchelike motion of dislocations, akin to self-
organized criticality in extended nonlinear systems �8�. In
contrast, low-dimensional chaotic behavior was detected by
reconstructing phase-space trajectories for type B deforma-
tion curves �7,9�. The reconstructed strange attractors—a sig-
nature of chaos—are also characterized by scale invariance
associated with their geometry �10�. Moreover, since the
transition between two kinds of dynamics can be controlled
by a single parameter, e.g., the applied strain rate, the plastic
instability presents a particularly interesting example of non-
linear dynamics.

Neither the statistical analysis nor the phase space recon-
struction revealed a particular dynamical character for type C
effect. Several other approaches, also based on searching for
scaling laws characterizing the intermittent plastic flow, have
been proposed recently �e.g., �11–14��. However, these
works concentrated on higher strain rates. Furthermore, the
quantitative analysis of type C behavior is complicated by a
diversity of shapes associated with type C deformation
curves. This observation supports the notion that type C ser-
rations exhibit a stochastic nature, which slowed down the
progress toward understanding the low strain-rate domain of
instability. Nevertheless, a recent investigation utilizing the
multifractal analysis of deformation curves indicates that the
PLC effect may manifest scale-invariant behaviors through-
out the entire range of strain rates, including the type C do-
main �15�. This conclusion contradicts the previous hypoth-
esis and warrants a more detailed investigation.

This paper reports the results of a multifractal analysis of
type C instability in an AlMg alloy and is organized as fol-
lows. Section II describes experimental details and outlines
the multifractal approach to analyze the serrated deformation
curves. The application of this analysis to the experimental
data is presented in Sec. III. It is shown that the serration
sequences contain both random serrations and a correlated
component that results in scaling laws. To verify this conclu-
sion, the same analysis is applied in Sec. IV to hypothetical
signals obtained by superposing white noise on multifractal
Cantor sets. The proposed multifractal analysis is found to be
capable of revealing the correlated behavior even with the
presence of a high noise level component.

II. EXPERIMENTAL TECHNIQUE AND DATA ANALYSIS

Flat polycrystalline specimens of an AlMg �3 at. % Mg�
alloy with the gauge dimensions of 20�5.5�1.5 mm3 were
pulled in tension at room temperature at a constant strain
rate. All specimens were annealed at 400 °C for 2 h and
quenched in water to provide a uniform solute concentration,
which avoids an extrinsic source of material heterogeneity.
Most experiments were carried out at a low strain rate, �̇a
=4�10−6 s−1, assuring type C behavior. It was checked that
the transition to type B instabilities occurred above �̇a=2
�10−5 s−1. Additional tests were conducted at strain rates of
2�10−6 s−1 and 6�10−4 s−1. The data acquisition rate was
chosen between 0.5–250 Hz, depending on �̇a, such that the
files for the multifractal analysis contained between 10 000
to 40 000 data points. A procedure, similar to that used in
�16�, was employed to verify that reducing the size of the

original data files by factors of two or four did not signifi-
cantly modify the multifractal characteristics.

The application of the multifractal analysis �17,18� to
jumplike deformation curves has been described in several
papers �7,15,16� and will be subsequently outlined. First, a
stress-time curve ��t� is normalized to allow for slow trends
�corresponding to the test duration� due to strain hardening
�16�. The relevant time series, reflecting the plastic instability
events, is obtained by finding the absolute value of the finite
difference approximation � j�tj� for the derivative d��t� /dt of
the normalized curve. The data set � j�tj� is covered with
grids with the division �t that varies as powers of 2. For a
given �t, a probability measure �i��t� is calculated as the
normalized sum of � magnitudes in the ith interval �t:

�i��t� = �
k=1

n

�k��
j=1

N

� j , �1�

where N is the total number of the data points and n the
number of points in the ith interval. With this definition, the
measure �i characterizes the intensity of plastic instabilities
within a given time range.

The qth moment of the measure, defined as Zq��t�=�i�i
q,

is calculated for various q values �q is a real number; see
Ref. �19� for the particular case q=1�. To demonstrate how
the family of Zq��t� dependences describes the scaling prop-
erties of a time series, it is convenient to consider a trivial
example of scale invariance, a constant signal. In this case,
the corresponding uniform measure �i is simply proportional
to �t. The number of terms in the summation in Eq. �1� is
given by the number of �t intervals, which scales as �t−1 in
the limit �t→0. Thus the scaling dependences follow power-
law behavior, Zq��t���tq−1, when �t is small enough com-
pared to the signal duration. This example is interesting be-
cause similar attributes also result from the analysis of
random or periodic stress drops. Indeed, these events are
uniformly distributed in time above some characteristic pe-
riod. If the time series is long enough, the trivial scaling law
will be followed over certain �t intervals, which are re-
stricted by the characteristic period at small scales and the
total time at large scales.

For a multifractal structure, the Zq��t� dependences can be
described by a similar relationship,

Zq��t� � �t�q−1�Dq, �2�

where the values of Dq generally depend on q and differ
from unity �cf. �19� for q=1�. In particular, a uniform fractal
structure corresponds to a unique but a nontrivial scaling law.
This behavior unambiguously proves the presence of long-
range correlations in the corresponding data set. As was pre-
viously shown �7,15�, the spectrum of generalized fractal di-
mensions Dq of PLC deformation curves change for various
PLC types. Thus, the fractal dimensions can characterize the
respective changes governing the dislocation dynamics.

A few Dq values have a direct interpretation �18�. Particu-
larly, Z0��t� is the number of cells with a nonzero measure,
consequently, D0 is the box-counting estimate of the fractal
dimension �or capacity�, which characterizes the geometrical
support of the stress serrations. However, there is no general
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interpretation of various Dq magnitudes. This difficulty is
caused by the global character of Zq sums, which mix powers
of �i’s throughout the data set. It is useful to consider an
equivalent representation for characterization that partitions
local scaling indices. As a result, the scaling law �2� is re-
lated to the scaling of the local measure itself: �i��t���t�,
where � is a local characteristic that can have a continuous
range of values in the limit as �t→0, with �	1 reflecting
singular behavior �17�. Further, the data subsets correspond-
ing to neighboring values of � are fractal and can be quan-
tified by their capacities f . The singularity spectrum so ob-
tained, f���, is unambiguously related to the Dq dependence
by the Legendre transformation �17�. In this investigation,
f��� was determined using scaling relationships suggested in
�20�,


���t,q� = �
i

�̃i��t,q�ln �i��t� � ��q�ln �t ,


 f��t,q� = �
i

�̃i��t,q�ln �̃i��t,q� � f�q�ln �t , �3�

where �̃i��t ,q�=�i
q /� j� j

q, which avoids numerical deriva-
tion difficulties encountered when using the Legendre trans-
formation. Both spectra, Dq and f���, were traced by varying
q from −20 to 40. The slopes of the scaling dependences for
each q were estimated by averaging over ten trials with ran-
domly chosen starting points utilized to generate the �t grid.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The deformation curves recorded at the strain rate of
4�10−6 s−1 possessed cognate type C features, namely deep

stress drops �from a few MPa to about 30 MPa� followed by
a much smoother reloading portion, as illustrated in Fig. 1.
The experimental measurement noise, which has an ampli-
tude of approximately 0.1 MPa, is also discernible on the
smoother portions of the curves. In spite of the qualitative
similarity, the examples in Fig. 1 illustrate that the stress
evolution can vary strongly between samples. The deforma-
tion curves are characterized by different dispersions of
stress jump amplitudes and the variable clustering of these
events. Indeed, the stress jumps in Fig. 1�a� occur throughout
the range of deformation and display a variety of amplitudes
above the measurement noise level. In contrast, Fig. 1�b�
shows distinct events that clearly form clusters, which sug-
gests correlation of the deformation processes.

Such a clear visual distinction is not obvious for all speci-
mens. Thus a quantitative approach that provides a charac-
terization of the temporal structure for various deformation
curves is needed. Multifractal analysis proves to be a suitable
technique, since the scaling dependences described by Eqs.
�2� and �3� are found for most deformation curves. The
analysis demarked two typical experimental situations corre-
sponding to the examples presented in Fig. 1. These cases
will be discussed in detail below.

Figure 2 presents examples of scaling dependences �Eq.
�3�� for the curve displayed in Fig. 1�a�. A linear region is
apparent over an interval ranging from approximately 500 s
to at least 20 000 s �it almost persists to the entire duration,
37 000 s, of the deformation curve� and allows a reliable
determination of the respective slopes. The scaling ranges for
similar deformation curves included intervals starting be-

FIG. 1. Examples of portions of stress-time curves ��t� of AlMg
polycrystalline samples deformed at a strain rate of 4�10−6 s−1.
Insets: Corresponding plots of �= �d��t� /dt�.

FIG. 2. Examples of scaling dependences �3� for the time series
shown in Fig. 1�a�. Vertical dashed lines bound the intervals used to
calculate the multifractal spectra; dashed lines trace the correspond-
ing average slopes; dashed and dotted lines trace the unit slope that
would be found at all q values in the uniform case, e.g., for a
stochastic series.
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tween 200 and 500 s and ending between 20 000 and
30 000 s. It can be seen in Fig. 2 that the slopes gradually
change with varying q, revealing a multifractal character of
the time series. The resulting spectra Dq and f��� are pre-
sented in Fig. 3. The error bars shown in the figure were
determined from least-square estimates of the slope’s stan-
dard deviation. In the general case, all kinds of uncertainty
contribute to the data scatter on scaling dependences: The
finite number of events in the experimental dataset, the in-
evitable noise and measurement errors, and possible nonfrac-
tal components. Therefore, the applied procedure naturally
incorporates the stress measurement error �see also �18,21�
for evaluation of the error of determination of fractal dimen-
sions from experimental data�. The spectra in Fig. 3 are char-
acteristic of multifractal structures �17�. For comparison, Fig.
3�a� also presents a dependence Dq calculated for a numeri-
cally generated random time series containing 214 data
points. As shown, the random case is close to the ideal case
of a perfectly uniform measure �horizontal line Dq=1�.

Since the upper scaling bound is near the total test dura-
tion, long-range time correlations between stress jumps were
identified. On the other hand, the lower scaling bound shows
that the multifractal behavior may not extend to small time
scales, which reflect the characteristic range of interevent
times between small stress irregularities with amplitudes be-
low �1 MPa. It can be suggested that the observation of the
scale-invariant behavior is strongly affected by the correla-
tion between large plastic flow events. This suggestion is
supported by the evaluation of truncated data sets, which

remove the low-amplitude part of the time series using a
threshold with an increasing magnitude �thr. Changes in the
spectra were found to be insignificant while �thr is less than
�0.03�max, which corresponds to a stress drop amplitude of
�1 MPa �the maximum value �max considers the entire time
series�. The results of the truncation test for �thr=0.03�max
are also illustrated in Fig. 3. It is apparent that only the data
for negative q values are considerably influenced by the sig-
nal truncation. As follows from Eqs. �2� and �3�, the lesser
values of the measure � dominate Zq sums when q	0 �17�.
Therefore, it is not surprising that the respective spectra
branches are perturbed by the removal of small events. In
contrast, the spectra parts corresponding to non-negative q’s,
which are dominated by the largest local measure values,
prove to be very robust. The values of � and D are slightly
diminished by the truncation, which is expected due to the
amplification of the local singularity when retaining only the
largest local bursts. The dimension of the signal support,
D0= fmax �18�, is also weakly affected by truncation. The
proximity of this value to unity �D0	0.95� indicates that the
events responsible for the observation of multifractality are
approximately uniformly distributed in time. This observa-
tion is also consistent with the effect of further increasing of
�thr: It does not lead to abrupt changes, but to a progressive
deterioration of the scaling interval and dilatation of the
spectra because of the depletion of event statistics in the data
set.

These results show that the deformation curve is com-
posed of both a self-similar structure and a nonfractal com-
ponent. The latter includes stress jumps with amplitudes up
to �1 MPa, or an order of magnitude higher than the mea-
surement noise, which is conform to the common conjecture
of a stochastic nature of type C PLC effect. On the contrary,
the intensive deformation bands affect subsequent events,
leading to the long-range time correlations detected by the
multifractal analysis. It should be also noted that the devia-
tion from the scaling law at small scales may not mean that
all the low-amplitude jumps are independent of the multi-
fractal sequence. However, the analysis cannot distinguish
the possible low-amplitude multifractal jumps from the ran-
dom sequence.

The scaling dependences found for deformation curves
with strong jump clustering �Fig. 1�b�� also showed linear
regions with gradually changing slopes, which again suggest
multifractality. However, the quantitative results are different
from those discussed previously. The linear scaling was
found over time intervals starting between 50 and 200 s and
ending between 1500 and 3000 s, where the upper scaling
bound matches the maximum length of the stress jump clus-
ters. As shown in Fig. 4, the spectra obtained for the entire
deformation curve presented in Fig. 1�b� pass through the
points corresponding to D0	1. Although this result is simi-
lar to the corresponding data in Fig. 3, the dependences are
nonmonotonic when q	0, which infers that one cannot un-
ambiguously prove the multifractal character of the deforma-
tion curves. Such peculiarities will be further evaluated in
Sec. IV using multifractal Cantor sets. Nevertheless, it turns
out that the multifractal structure of the experimental data
can be unmasked by truncation tests without recourse to hy-
pothetical data sets. Similar to the above case, the multifrac-

FIG. 3. �a� Generalized dimension and �b� singularity spectra for
the time series shown in Fig. 1�a�. Solid circles—the entire data set;
open circles—after cutting off the bursts below �thr=0.03�max. The
horizontal dotted line in the above figure represents the spectrum in
the ideal uniform case �it would correspond to a single point �1;1� in
the bottom figure�. For comparison, the generalized dimension
spectrum for a random set is shown �crosses�.
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tal spectra of highly clustered time series are not noticeably
influenced by a truncation with �thr	0.03�max. However,
they acquire smooth shapes �cf. Fig. 4� around �thr
=0.03�max. The modified spectra are characteristic of singu-
lar and clustered behavior: D0	0.45 and ��q�	1 for all q’s
in Fig. 4. It can be concluded that the large events form a
self-similar structure that is more highly clustered that in the
previous case. The effect of truncation can be easily under-
stood. First, the initial signal is nonzero almost everywhere
due to experimental noise, indicated by D0’s proximity to
unity. Next, the nonmonotonic behavior at q	0 is the result
of a mixture of the nonfractal and the multifractal compo-
nents, where the smaller nonfractal component becomes sig-
nificant in Zq sums with decreasing q. Last the positive q
branches, where the contribution associated with large stress
bursts is dominant, are not significantly influenced by filter-
ing small events and converge with the unmodified spectra at
large q. The deterioration of the smooth spectra upon exces-
sive truncation was similar to the prior observation for dense
series and was primarily dominated by the depletion of the
data set.

The data evaluation using multifractal analysis shows that
the two visually different experimental situations are quali-
tatively similar and that some conclusions made for the non-
clustered serration sequences are also valid for the clustered
sequences. The agreement of the critical threshold and the
correlation between the upper scaling bound and the maxi-
mum length of stress jump clusters �the test duration in the
nonclustered case� testify that the self-invariant behavior can
be primarily attributed to the larger stress jumps.

The variability of the multifractal characteristics between
samples and the large width of the spectra suggest that the
type C instabilities are highly heterogeneous. In the previous
investigation �e.g., �7,15��, bursts of heterogeneity were ob-
served over a strain-rate interval between type B to type A

behavior. Persistent narrow spectra, indicating a high degree
uniformity, were found over a wide strain-rate range corre-
sponding to the type B serration domain. In view of these
observations, additional tests were conducted at strain rates
below and above the reference strain rate of 4�10−6 s−1.
The spectra found at 6�10−4 s−1 �type B effect� were close
to those reported in �16� for the same alloy composition and
displayed narrower dependences than those in Figs. 3 and 4
�see Fig. 5�. On the other hand, no multifractal characteristics
were found for tests conducted at 2�10−6 s−1. This strain
rate resulted in regular type C deformation curves with
roughly equally spaced deep stress jumps or, at most, pairs of
jumps. The corresponding scaling dependences for various
q’s converged to the unique slope, Dq=1 �cf. Sec. II�, for �t
exceeding the interjump spacing. Therefore, it is natural to
suggest that the heterogeneity observed at the reference
strain rate is caused by a transitory behavior between type B
serrations and periodic relaxation oscillations.

The microscopic mechanism of heterogeneity can be un-
derstood within the unique framework proposed in �6,7�. It
considers a competition between triggering local strain
jumps and the relaxation of prior heterogeneity via plastic
flow during the subsequent reloading. Elastic mismatch, gen-
erated by local strain incompatibilities in polycrystalline ma-
terials, is usually considered as a driving force for plastic
relaxation. At the limit of a very slow reloading, which tends
to favor effective strain uniformity, this mechanism results in
periodic relaxation oscillations associated with deformation
bands occurring at random sites �cf. Sec. I�. This assertion
was confirmed by the tests at the slowest strain rate, �̇a=2
�10−6 s−1. As strain rate increases, the reloading time be-
comes insufficient to completely relax the local strain differ-
ences, so periodicity is broken. It should be stressed that
such a qualitative consideration cannot forecast whether the
resulting irregularity consists of random fluctuations super-
posed on periodic oscillations or a deterministic structure
that reflects the correlated dislocation motion. On the con-
trary, the multifractal analysis presented in this investigation
confirms the suggestion made in �15�, which postulated that
long-range time correlations in a dynamic dislocation system
operate over a broad range of strain rates, including both
type B and type A PLC effects, as well as type C serrations.

FIG. 4. Same as in Fig. 3 for the time series shown in Fig. 1�b�.
Solid circles—the entire data set; open circles—after cutting off the
bursts below �thr=0.03�max.

FIG. 5. Examples of generalized dimension spectra for four
specimens deformed at the reference strain rate �̇a=4�10−6 s−1

and a specimen deformed under type B conditions ��̇a=6
�10−4 s−1�.
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Moreover, the proposed fractal analysis provides evidence
that a unique dynamical mechanism is useful to examine the
experimental variability of type C deformation curves. The
key point is likely the variation of the internal stresses, which
is controlled by the material microstructure. The deformation
bands and the associated stress serrations would tend to clus-
ter in a material with a homogeneous microstructure. Indeed,
when the stress level is nearly uniform throughout the speci-
men, the internal stress increment due to a deformation band
would trigger the next band in its neighborhood. In contrast,
the band correlation weakens in heterogeneous materials, be-
cause a new band may develop in either a neighboring site
due to the generated internal stresses, or elsewhere in the
material due to independently achieving the instability con-
dition. If the strain rate is high enough, the plastic relaxation
of strain incompatibilities can become inefficient, and the
bands will show high correlation in any material. Such be-
havior can be associated with type B serrations characterized
by “relay-race” propagation of deformation bands through-
out the specimen. Indeed, the multifractal characteristics of
type B PLC effect were found to be weakly sensitive both to
the strain rate and the material microstructure �7,15�.

IV. INFLUENCE OF NOISE ON MULTIFRACTAL SETS

To verify the procedure used to unmask the multifractal
structure and stochastic background associated with the ex-
perimentally observed behavior, multifractal Cantor sets,
with deliberate noise contamination, were analyzed. The
Cantor sets with variable clustering degrees were constructed
by an iterative segment division procedure. At the first itera-
tion, the segment is divided into i pieces storing the relative
segment size li and the relative measure pi �18�. At the pro-
ceeding steps, the fragmentation is repeated for all segments
of the current construction such that their lengths are multi-
plicative combinations of li and their measures are multiples
of pi. The multifractal spectra are calculated according to the
procedure described in Sec. II, using grids with the box
length �l varied as powers of 2.

It was found that noise, which has a continuous support,
only weakly affects the multifractal spectra of the Cantor set,
providing that it is also distributed on the continuous sup-
port. A continuously distributed Cantor set was constructed
using rescaling factors li=

1
4 �i=1 to 4�, p1= 1

6 , p2= p3= 1
4 , and

p4= 1
3 �cf. �16��. Figure 6�a� presents the scaling dependences

�2� for a set containing 214 segments �thirteen iterations�. The
linear behavior is seen over approximately three orders of
magnitude of �l, which allows a reliable determination of the
multifractal spectra as demonstrated in Fig. 7. The calculated
spectra and the analytical dependences coincide when q�0.
Moreover, they show fair agreement in the range q	0,
which corresponds to the regions with rarified measure and is
poorly handled by the utilized numerical procedure �21�. The
figure also illustrates that D0=1, as expected for a data set
with continuous support. Such a dense Cantor set turns out to
be extremely robust with regard to noise. Although the addi-
tion of noise leads to a smaller interval of power-law scaling,
depending on the noise amplitude, the data in Fig. 7 testify
that the spectra can be reliably determined up to a noise level

of �0.2–0.3��max. Moreover, the spectra also persist upon
truncation, despite removing not only added noise but also
portions of the initial Cantor set. Such robustness justifies the
approach used to analyze the experimental data.

More complex behavior was found for a highly clustered
Cantor set generated with the rescaling factors l1=0.25, l2

FIG. 6. Examples of scaling dependences �see relationship �2��
for multifractal Cantor sets distributed on a �a� continuous and �b�
fractal geometrical support. Solid symbols—initial sets; open
symbols—the same sets superimposed with random noise. The
dashed and dotted line traces the unit slope. �l denotes the grid size.

FIG. 7. �a� Generalized dimension and �b� singularity spectra of
the multifractal Cantor set distributed on a continuous support
�open circles� and the same set superposed with a 20% noise �solid
circles�. The solid line presents the analytical dependence for the
initial set.
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=0.35, l3=0.4, p1=0.6, p2=0, and p3=0.4 �17�. In this case,
the clustering is provided by enforcing a zero measure to the
middle segments, i.e., removing the midsections. The scaling
dependences �2� for the set containing 214 nonempty seg-
ments �fourteen iterations� are presented in Fig. 6�b�. The
respective multifractal spectra are shown in Fig. 8. The com-
parison with the analytical dependences shows that the cal-
culation procedure is not independent of the previously men-
tioned imprecision for the subsets corresponding to small
measure values �large systematic errors appear in the nega-
tive q range�. However, the spectra are well determined for
positive q’s, which allows a study of the noise effect.

The fractal dimension D0 of the highly clustered Cantor
set is approximately equal to 0.62. It is obvious that the
addition of any noise, even of very small amplitude, will
strongly affect the multifractal spectra by changing from the
fractal nature to a continuous support, where D0 is exactly 1.
This crossover is illustrated in Fig. 6�b� using the example of
scaling dependences for noise at the level of 0.05�max. For
large positive q values, where the Cantor set elements domi-
nate, the curves coincide with the dependences found in the
absence of noise. However, the slope approaches 1 for q=0.
Some bending of scaling dependences is observed at small
q’s because of significant contributions from the Cantor set
and the noise. Nevertheless, for the selected array of q val-
ues, nonlinear behavior did not exceed data scatter. Thus,
linearity was not completely deteriorated and the respective
slopes could be determined. For q values slightly below zero,
the increasing significance of the noise contribution leads to
a nonmonotonic slope variation and other peculiarities of the
spectra similar to those observed in experiments. The overall
effect of noise is clear from the comparison of the spectra of
the initial Cantor set and the perturbed set �Fig. 8�. The dif-
ferences between these spectra are remarkably similar to
those observed in experiments after removing the low-
amplitude component of the time series �cf. Figs. 4 and 8�. It
was verified that filtering the low-amplitude part of the
noise-perturbed Cantor set effectively restored the initial
spectra. These tests justify the hypothesis on the superposi-
tion of stochastic and multifractal components in the experi-
mental data.

V. CONCLUSIONS

The PLC effect is an example of nonlinear dynamics, with
a rare property that two distinct dynamical regimes—self-
organized criticality and deterministic chaos—were observed
in different strain-rate ranges �6,7,9�. Both regimes corre-
spond to visible changes in the temporal structure of defor-
mation curves. The transition between the high-dimension
critical regime and the low-dimension chaotic regime takes
place when the imposed strain rate is decreased. One more
change, documented in the phenomenological classification
of the PLC effect �type C serrations�, occurs upon its further
decrease. It is thus topical making a map of dynamical be-
haviors in the whole domain of plastic instability.

The multifractal analysis discloses self-similarity associ-
ated with type C deformation curves, which unambiguously
proves the existence of long-term correlations of deformation

bands characteristic of the low strain-rate regime. Such cor-
relations can be attributed to successive band initiation and
the occurrence of long-range internal stresses. The exact
shapes of the serration sequences and their corresponding
multifractal spectra are quite diverse. This variation is likely
to be caused by transitory dynamics of plastic deformation,
which are highly sensitive to the material microstructure. In-
deed, a tendency to periodic relaxation-type oscillations, pre-
dicted by local models of the PLC effect, disregarding strain
heterogeneity, is observed for the least strain-rate value
tested. In other words, the further decrease in the effective
dimension of the collective dislocation dynamics occurs near
the lower strain-rate boundary of instability. The entire map
of behaviors is consistent with nonlocal models, combining
the local property of the negative stress–strain rate sensitivity
and the nonlocal spatial coupling due to internal stresses re-
sulting from strain gradients �see, e.g., �22��. The approaches
developed in these models may be useful for understanding
other nonlinear systems described by N-shaped nonlinearity
and containing many interacting elements, so that transitions
between high-dimension modes and low-dimension modes
are possible.

The analysis of the experimental data is supported by the
study that shows influence of stochastic noise on multifractal
Cantor sets. This investigation provides insight upon the gen-
eral question of uncovering the dynamical properties in noisy
experimental data. A number of other numerical techniques
have been proposed previously, mostly with the aim of re-
constructing deterministic chaos in low-dimensional dynami-
cal systems �23,24�. It is shown in the present paper that the
multifractal analysis can serve as a simple, practical tool apt
to detect self-similarity in very noisy signals with unknown
dimensionality.

It should be stressed that as the stochastic noise continu-
ously fills the given time interval, its effect is different for

FIG. 8. �a� Generalized dimension and �b� singularity spectra of
the clustered Cantor set �open circles� and the same set superposed
with a 5% noise �solid circles�. The solid line presents the analytical
dependence for the initial set.
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clustered and nonclustered signals. The multifractal spectra
of nonclustered signals were found to be quite insensitive to
noise. In contrast, the spectra of clustered signals are
strongly distorted even by small noise amplitudes. A simple
test based on the truncation of a time series, using a variable
threshold, is proposed to verify the apparent multifractal be-
havior.
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